Journal of Liaoning Petrochemical University
  Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Capacitance Tomography Image Reconstruction Algorithm Based on Confined Particle Swarm
Yuanna JIAO, Zhenhua ZUO, Leilei ZHANG, Zhiheng GUO, Zhe KAN
Abstract20)   HTML2)    PDF (1469KB)(14)      

The robustness of the particle swarm system is great, which is very helpful for solving ill?conditioned problems such as image reconstruction. However, the large number of pixels in the reconstructed image leads to a large dimension of particle and it is difficult for the particle to achieve the optimal solution in the optimization process. In order to solve this problem, a constraint is added to the particle position, imaging by Tikhonov regularization algorithm is used as the reference of particle position. The search for particles is constrained to the range of Tikhonov regularization algorithm reconstructs the image. Using the penalty function to solve the constraint problem to improve the particle search speed. Linearly decreasing weights as inertial weights for particle swarms optimization to realize the adaptive dynamic adjustment of the inertia weight and improve the flexibility of the algorithm; the chaotic operator is added to the position search process of the particle swarm optimization, when the particle falls into the local optimum, the chaotic variable will fluctuate within a certain range, reducing the missed rate of the optimal solution. The simulation results show that The improved particle swarm algorithm is more accurate and efficient than the traditional LBP algorithm and Tikhonov regularization algorithm.

2024, 44 (2): 91-96. DOI: 10.12422/j.issn.1672-6952.2024.02.014
Electrochemical Properties of Co⁃Doped La 1.5Ca 0.5NiO 4+ δ Cathode Materials
Jing JIANG, Yunfeng SONG, Ji MA, Lei ZHANG, Leilei ZHANG, Zhaoyuan SONG
Abstract24)   HTML3)    PDF (1763KB)(17)      

A new type of Ruddlesden?Popper cobalt?rich layer perovskite oxide La1.5Ca0.5Ni0.2Co0.8O4+δ (LCNC) was synthesized by a sol?gel process. The results show that the conductivity of LCNC in air at 400 ℃ to 800 ℃ is 4~58 S/cm, which is better than that of most reported SOFC cathode materials. The polarization impedance of symmetrical battery LCNC|LSGM|LCNC is 0.16 Ω·cm2 at 800 ℃. The maximum power density of the single cell supported by 300 μm thick La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) with the LCNC cathode was 527 mW/cm2, and the performance of the single cell decreases slightly after working continuously for 50 hours. The experimental results show that LCNC is a potential SOFC cathode material.

2024, 44 (2): 29-35. DOI: 10.12422/j.issn.1672-6952.2024.02.005
Investigation on Ba 2Fe 1.3Mo 0.7O 6- δ Double Perovskite as Anode Material for Solid Oxide Fuel Cell
Xiaogang SU, Zhaoyuan SONG, Leilei ZHANG
Abstract92)   HTML7)    PDF (1389KB)(70)      

The Fe/Mo ordering at B?sites of Ba2FeMoO6-δ (BFM) were changed by adjusting Fe/Mo amount of substance ratio (i.e., stoichiometric ratio), and then a new double?perovskite anode material Ba2Fe1.3Mo0.7O6-δ (BFM0.7) for SOFC were obtained. The results indicated that the electrical conductivity of the BFM0.7 anode is 15.0~20.0 S/cm at 600~800 ℃ in H2, which is much larger than that of the lowest target for SOFC electrode (0.1 S/cm). The peak power density and polarization resistance of the BFM0.7 anode cell attained 1 149 mW/cm2 and 0.15 Ω·cm2 at 850 ℃. Compared with BFM anode, the performance of BFM0.7 is significantly improved. In addition, the performance of BFM0.7 anode cell showed no degradation after testing for 39 h, indicating that the BFM0.7 anode possesses has excellent electrochemical stability.

2024, 44 (1): 29-34. DOI: 10.12422/j.issn.1672-6952.2024.01.005
Acoustic Attenuation Characteristics of Remote Wireless Communication in Oil Wells
Haicheng Bai, Chenxu Wang, Quan Lin, Leilei Zhang
Abstract301)   HTML    PDF (907KB)(250)      

In the process of oil well operation, wireless communication technology can solve the problems such as high bit error rate and poor real?time performance in the down?hole parameter transmission. How to choose the characteristic frequency of sound wave and explore the attenuation degree of sound wave in the oil string have become the research hotspots in recent years. In this paper, the attenuation characteristics of acoustic signals transmitted along metal tube walls were studied, a communication model was established, and the attenuation law of acoustic signals was quantified on this basis. Combined with Comsol waveform simulation software, the correctness of communication theory model and characteristic frequency selection was verified. The results show that this method can effectively transmit acoustic signals and provide an optimal frequency selection scheme for oil well remote wireless communication technology.

2022, 42 (3): 79-83. DOI: 10.3969/j.issn.1672-6952.2022.03.014